
Noname manuscript No.
(will be inserted by the editor)

Too many Images on DockerHub! How Different are
Images for the same System?

Md Hasan Ibrahim · Mohammed
Sayagh · Ahmed E Hassan

Received: date / Accepted: date

Abstract Containerization is a technique used to encapsulate a software sys-
tem and its dependencies into one isolated package, which is called a con-
tainer. The goal of these containers is to deploy or replicate a software system
on various platforms and environments without facing any compatibility or
dependency issues. Developers can instantiate these containers from images
using Docker; one of the most popular containerization platforms. Further-
more, many of these images are publicly available on DockerHub, on which
developers can share their images with the community who in turn can lever-
age such publicly available image. However, DockerHub contains thousands
of images for each software system, which makes the selection of an image a
nontrivial task. In this paper, we investigate the differences among Docker-
Hub images for five software systems and 936 images with the goal of helping
Docker tooling creators and DockerHub better guide users select a suitable
image. We observe that users tend to download the official images (images
that are provided by Docker itself) when there exist a large number of image
choices for each single software system on the community images (images that
are provided by the community developers), which are in many cases more
resource efficient (have less duplicate resources) and have less security vulner-
abilities. In fact, we observe that 27% (median), 35% (median), 6% (median),
and 9% (median) of the DockerHub Debian, Centos, Ubuntu, and Alpine based
images are identical to another image across all the studied software systems.
Furthermore, 26% (median), 49% (median), and 8% (median) of the Alpine,
Debian, and Ubuntu based community images are more resource efficient than
their respective official images across all the five studied software systems. 7%
(median) of the community Debian based images have less security vulnera-

Md Hasan Ibrahim · Mohammed Sayagh · Ahmed E Hassan
Software Analysis and Intelligence Lab (SAIL)
Queen’s University
Kingston, ON, Canada
E-mail: {ibrahim.mdhasan, msayagh, ahmed}@cs.queensu.ca

2 Md Hasan Ibrahim et al.

bilities than their respective official images across the four studied software
systems, for which an official Debian based image exists. Unfortunately, the
description of 78% of the studied images do not guide users when selecting an
image (the description does not exist at all or it does not highlight the particu-
larities of the image), we suggest that Docker tooling creators and DockerHub
design approaches to distinguish DockerHub images and help users find the
most suitable images for their needs.

Keywords Docker · Docker images · DockerHub · Containerization

1 Introduction

One can package a software system with all of its dependencies and required
libraries into one isolated container using Docker [15]. Docker is a platform
used to instantiate Docker images on containers, which can be rapidly deployed
on any environment without dealing with compatibility and dependency issues.
Docker helps practitioners quickly ship a software system into production by
reducing the deployment time by 10-15 times compared to the manual setup
of the environments [24].

Docker is one of the most popular containerization technologies due to its
portability, lightweight, and self-sufficiency [2, 21, 23, 26]. According to 451
Research [1], container technologies generated a revenue of $762 million in 2016
and are expected to reach a revenue of $2.7 billion by 2020 [25], with Docker
accounting for 83% of all this revenue [6]. Moreover, Datadog [10] reports that
around one-quarter of their customers already adopted Docker for deploying
their applications on the cloud [11].

DockerHub is the “world’s leading service for finding and sharing container
images with [one’s] team and the Docker community” [18]. It is a cloud-based
image registry where developers can share their images either privately with a
selective group of users, or publicly with the whole community of DockerHub
users. DockerHub contains a rich database of images, from which one can reuse
an existing image instead of building one from scratch.

However, a large number of images exists for installing the same software
system making the task of choosing an image a not so straightforward task. For
example, one can obtain 57,000 images when searching for an image related to
the Nginx software system in DockerHub, hence she may end up choosing an
image which is not the most suitable to fulfill their needs when other images
could be more suitable. Moreover, users do not always choose just a single
image, they might often need to choose and connect multiple images together
to build a distributed software installation or a stack of layers such as the
MEAN stack, which is composed of the following software systems: MongoDB,
Express.js, AngularJS, and Node.js. In fact, searching the last software systems
results in more than 5,000, 9,000, 11,000 and 55,000 images for MongoDB,
Express.js, AngularJS, and Node.js respectively.

In this paper, we study the differences among 936 DockerHub images for
five software systems in order to help Docker tooling creators and Docker-

Too many Images on DockerHub! How Different are Images for the same System? 3

Hub define approaches that guide users locate the most suitable images for
their varying needs. Although prior studies focus on various aspects such as
security [27, 29, 33], quality [8, 35], and evolution [8, 34] of Docker images,
understanding the differences among DockerHub images to help users identify
a suitable image has not been explored in the literature. Borgi et al. [5] is the
closest work to our paper since they proposed a prototype for a multi-attribute
based search tool for DockerHub images. However, their approach is limited
to searching for images based on their names, sizes, and installed software
distributions. Their tool can report a large number of images while providing
no assistance for users who might wish to differentiate among these reported
images.

In the first part of this paper, we perform a preliminary study to under-
stand the benefits of using a DockerHub image, as well as the efforts to iden-
tify a suitable image on DockerHub by studying five software systems and 936
DockerHub images for each of these software systems. We observe that Docker
images require a considerable amount of effort to be built from scratch. How-
ever, finding a suitable image on DockerHub is not trivial since a large number
(a median number of 19,280) of images are reported when searching for each
software system. We also observe that the most popular DockerHub images
are the official images, although they might not be the most suitable images
to fulfill the needs of a user.

In the second part of this paper, we study the differences among the Dock-
erHub images for the same software systems in terms of their installed libraries,
resource efficiency, and security vulnerabilities. In this regard, we answer the
following three research questions:

RQ1. How different are DockerHub images for the same software
system in terms of their installed libraries?
DockerHub contains a large number of images for each software system.
These DockerHub images are different from each other in terms of their
installed libraries and versions. In particular, 27% (median), 35% (median),
6% (median), and 9% (median) of the Debian, Centos, Ubuntu, and Alpine
based images are identical to at least one other DockerHub image across all
the five studied software systems. Such differences are, unfortunately, not
well documented with 58% of the images not having any description and
the descriptions of 20% of the images not providing any indication about
the installed libraries.
RQ2. How different are these images in terms of their size and
resource efficiency?
Although official images are the most popular, 26% (median), 49% (me-
dian), and 8% (median) of the community Alpine, Debian, and Ubuntu
based images are more resource efficient (i.e., have less duplicate resources)
than their respective official images across all the five studied software sys-
tems. DockerHub images for the same software system have different sizes,
which indicates that there are a variety of DockerHub image choices based
on their used resources. Images for Cassandra based on Centos have the

4 Md Hasan Ibrahim et al.

largest interquartile range of 227 MB, while images for Nginx Alpine based
images have the lowest interquartile range of 8 MB. Similarly to RQ1, we
observe that developers do not document any particularities neither about
the used resources nor about the resource efficiency of their images.
RQ3. How different are these images in terms of their security
vulnerabilities?
While users prefer using official images, 7% (median) of the community
images have less security vulnerabilities (within the installed libraries as
reported by the Debian’s security-tracker) than their respective official im-
ages across the four studied software systems, which have an associated
Debian based official image. However, no indication about the security of
community images is provided neither by the DockerHub UI nor by the
description of these images. Note that DockerHub provides a feature that
identifies the vulnerabilities of an image; however, that feature is available
only for the official images.

Finally, our findings suggest to Docker tooling creators and DockerHub
define approaches that help users differentiate among DockerHub images and
find the suitable images of one’s needs.

The rest of this paper is organized as follows: Section 2 provides the back-
ground of our study. Section 3 presents our data extraction. Section 4 discusses
the results of our preliminary study. Section 5 provides the results of our study.
Section 6 presents a discussion based on our observations. Section 7 presents
related work. Section 8 discusses the threats to validity of our results. Finally,
Section 9 concludes the paper.

2 Background

Containerization is the process of packaging a software system with all of its
dependencies so that it can be run on any platform without any compatibility
or dependency issues. Containerization is an approach that provides an op-
erating system level virtualization which is more efficient and faster than the
traditional virtualization platforms [2, 21, 26]. That efficiency makes Docker
one of the most popular containerization platforms [23].

2.1 Docker Image

The creation of a Docker image starts with the creation of a Dockerfile as
shown in Figure 1. A Dockerfile is a script that contains the required instruc-
tions to install and configure a software system. Figure 2 shows an example
of a Dockerfile that builds an image to run the application myapp.jar, which
depends on Java. That Dockerfile uses Ubuntu as its operating system (line
2), updates the installed packages (line 8), installs Java (line 11-12), copies
resources into the Docker image (line 15), and runs the application myapp.jar
(line 21).

Too many Images on DockerHub! How Different are Images for the same System? 5

Developer

Dockerfile Docker Image DockerHub
writes builds shares

GitHub/
Bitbucket

pushes

triggers
build

DockerHub
image builder

outputs

Docker Engine
outputs

Manual building

Auto building

Fig. 1: Building and sharing images on DockerHub.

Fig. 2: An example of a Dockerfile that defines an image for myapp.jar that
runs on the Java runtime.

Starting from a Dockerfile, a Docker image can be built manually or au-
tomatically as shown in Figure 1. In the manual process, a developer can
build an image from a Dockerfile using the Docker Engine. This manual pro-
cess requires a developer to build the image whenever he or she updates their
Dockerfile. On the other hand, to build an image automatically, a developer
needs to push their Dockerfile to a GitHub [19] or Bitbucket [4] repository and
link that repository with a DockerHub repository (discussed in the next sub-

6 Md Hasan Ibrahim et al.

Official
Image

Community
Image

Fig. 3: Official and community images on DockerHub.

section). DockerHub then automatically builds and updates the Docker image
when a new Dockerfile version is pushed to the version control repository.

2.2 DockerHub

DockerHub is an online cloud-based image registry platform that hosts Docker
images which can be pulled and consumed by the Docker community. Each
image can have a short and/or a detailed description. An image can be either
public or private.

As shown in Figure 3, DockerHub hosts two types of public images: official
and community images. Official images are provided by DockerHub which,
in turn, ensures regular security updates for such official images [17]. On the
other hand, community images are developed and shared by the developer
community.

Every DockerHub image has the following meta-data associated with it as
shown in Figure 5:

– Full Name: The full name of a DockerHub community image is composed of
two parts: the owner name and the name that is provided by the developer
of the image. Note that official images do not have an owner name.

– Short Description: Each image has a short description which briefly de-
scribes the image.

– Full Description: The full description provides a detailed description about
the image.

– Tags: An image on DockerHub might have different versions, each of which
has a different tag. For example, the Cassandra official image has different
versions, each of which has a specific tag (e.g., latest and 3.11.6) as shown
in Figure 4.

Too many Images on DockerHub! How Different are Images for the same System? 7

Fig. 4: An example of two versions (i.e., latest and 3.11.6) of the Cassandra
DockerHub image.

– Download Count: It represents the number of times an image is down-
loaded. DockerHub UI shows the exact number of downloads when it is
lower than 1,000, and shows that number using a thousand or million scale
for images with a large number of downloads as shown in the two examples
of Figure 5.

– Star Count: Similar to the number of downloads, DockerHub provides the
number of stars on an image. Star count is also shown using a thousand or
million scale when the count is equal or higher than 1,000.

3 Data Extraction

In this paper, we study the differences among DockerHub images for the same
software system using three different data sources (i.e., installed libraries, re-
source efficiency of images, and security vulnerabilities). Our final data-set
contains 936 DockerHub images, which consists of seven official images and
929 randomly-selected community images for each of the five studied software
systems: Cassandra, Java, Mongo, MySQL, and Nginx. Note that there is only
one official image for each software system on DockerHub.

8 Md Hasan Ibrahim et al.

Star
Count

Download
Count

Owner
Name

Developer
Provided
Name

Short
Description

Full
Description
Tab

Tags Tab

Full
Description

Fig. 5: DockerHub image meta-data.

2500 x 5
image
names

962 Cassandra
391 Java
864 Mongo
1,077 MySQL
857 Nginx

505 Cassandra
275 Java
659 Mongo
777 MySQL
701 Nginx

219 Cassandra
161 Java
244 Mongo
258 MySQL
249 Nginx

164 Cassandra
102 Java
219 Mongo
239 MySQL
210 Nginx

(1) Crawl
DockerHub

(2) Select images
whose names match
their corresponding
systems names

(3) Select
images that
have the
“latest” tag

(4) Select a
representative
sample

(5) Select images
that have the
target software
system

DockerHub

164 Cassandra
103 Java
219 Mongo
239 MySQL
211 Nginx

(6) Extend the
list of official
images

Fig. 6: The process of collecting images.

3.1 Images Selection

Our image collection (performed in January 2020) consists of several steps
that are shown in Figure 6 and summarized in the following steps:

– Step 1: For each software system, we crawl all the image names that show
up in the first 100 pages of the DockerHub search results. (DockerHub only
returns 100 pages of results for each search). We end up with the names

Too many Images on DockerHub! How Different are Images for the same System? 9

of 2,500 images for each of the studied software systems (i.e, 12,500 image
names).

– Step 2: We select the official image as well as images whose name matches
exactly each of our studied systems. Our initial observations show that
some images combine our searched software system with other systems
or components. For example: the “richarvey/nginx-php-fpm” might install
not just “nginx”, but also “php” and “fpm”. Therefore, to compare images
that provide just our software system of interest, we only consider images
whose name exactly matches the name of the studied software systems. For
example, an image name should contain just the word “nginx” for nginx
related images such as “mailu/nginx” (owner name/image name). Note that
we consider the names “mongo” and “mongodb” for the Mongo software
system. We obtain 962, 391, 864, 1077, and 857 images for the Cassandra,
Java, Mongo, MySQL, and Nginx software systems, respectively, as shown
in Figure 6.

– Step 3: Our study considers the last version (i.e., the version that is tagged
with the “latest” tag) of each image in order to guarantee that we study
images that are at the same stage in regards to the current versions of their
libraries.

– Step 4: We select a representative random sample (confidence level = 95%,
confidence interval = 5%) from the images from Step 3 to end up with the
number of images that are shown in Figure 6.

– Step 5: We ensure that each studied community image respects the follow-
ing criterion: the image should install the target software system (indicated
by its name) using one of the following package managers: the Advanced
Package Tool (APT), Alpine Linux package manager (APK), or Red Hat
Package Manager (RPM).

– Step 6: We found that Java and Nginx official images support additional
versions for Java and Nginx on the Alpine Linux distribution, whereas
the “latest” version of these two images are based on the Debian Linux
distribution. Therefore, we extend our dataset of images with these two
additional versions of official images. The official images that are related
to the other software systems support just one Linux distribution 1.

Our comparisons use the following four perspectives:

Libraries: We use the Snyk-docker-analyzer [28] tool, which is an open
source software tool that extracts the installed libraries in an image. The
tool supports the APT, APK, and RMP package managers. We used the
Snyk-docker-analyzer to extract the installed libraries for each of the 936
studied images. Snyk-docker-analyzer pulls each of the 936 images from
DockerHub, builds a container for each of these images, executes these
containers, then extracts the installed libraries in these images. The Snyk-
docker-analyzer provides for each image the name of its installed libraries,

1 Our data is publicly available in https://github.com/SAILResearch/replication_dockerhub.

10 Md Hasan Ibrahim et al.

their versions, and how they are installed: manually by the developer of
that image, or automatically via an implicit dependency.
Resource Efficiency: We use Dive [30] to measure the resource efficiency
for each of our selected images. Dive is a tool that helps users explore the
content of an image, and that evaluates the resource efficiency of a Docker
image based on the amount of its wasted space (duplicate resources). For
example, one image may contain multiple identical files in different layers
or even in the same layer which is a waste of space. The resource efficiency
of an image is measured as follows:

E =
S −W

S
× 100

E = Resource efficiency
S = Size of the image
W = Wasted space due to duplicate file resources

Security Vulnerabilities: We use ConPan [32] that relies on the pub-
licly available Debian vulnerabilities dataset [13] to identify the security
vulnerabilities of the installed libraries for Debian based images. ConPan
reports the list of vulnerabilities that exist on a Docker image, the vulner-
able libraries and versions, the vulnerability status (open or resolved), and
the severity of the vulnerability (low, medium, or high).
Meta-data:We collect the size, the number of downloads, and the number
of stars of each of the 936 images using the DockerHub HTTP API [16].

4 Preliminary Study: The Advantages and Abundance of
DockerHub Images

The goal of our preliminary study is to understand the advantages of using an
existing image on DockerHub instead of building one from scratch, as well as
the difficulty of finding an image on DockerHub. We structure our preliminary
study through the following preliminary research questions:

PQ1. How many libraries one has to install for a typical software system?
PQ2. How many images are available when searching for a typical soft-

ware system on DockerHub?

PQ1. How many libraries one has to install for a typical software
system?

Motivation: The goal of this preliminary research question is to understand
the benefits of using a DockerHub image. In other words, the goal is to un-
derstand the amount of efforts that practitioners can save by using one of the
available DockerHub images instead of building an image from scratch.

Approach: To measure the development and maintenance efforts that one
can save using a DockerHub image, we count the number of libraries which
are manually installed as well as the libraries that are automatically installed

Too many Images on DockerHub! How Different are Images for the same System? 11

0

200

400

600

cassandra java mongo mysql nginx

of

 in
st

al
le

d
lib

ra
rie

s

Automatically installed Manually installed

Fig. 7: The number of installed libraries in different types of images.

to quantify the required efforts for building and maintaining a single Docker
image. Note that we extract the libraries that are installed in an image follow-
ing the approach discussed in Section 3.

Results: Developing a new Docker image might require a consider-
able amount of installation and testing effort. We observe that one has
to manually install a large number of libraries whose median ranges between
27 and 107 installed libraries. The situation gets even worse when it comes
to building a distributed software system, which involves building and testing
multiple Docker images.

Besides installing and testing an image built from scratch, maintaining
an image can be more challenging. Prior studies [14, 33] suggest that many
libraries can introduce bugs as well as security issues in a Docker image. There-
fore, developers need to check that the libraries that they install are secure
and error free. Unfortunately, developers do not only need to check the health
of the manually installed libraries, but also libraries that are automatically
installed via implicit dependencies. In fact, the number of these automatically
installed libraries is not negligible since we observe that a median of 35 to 131
libraries are installed automatically as shown in Figure 7.

PQ2. How many images are available when searching for a typical
software system on DockerHub?

Motivation: The goal of this preliminary research question is to understand
the variety of choices that exist when searching for a single software on Dock-
erHub. We believe that the larger the number of available images is, the more
challenging it is to find the appropriate image. Therefore, this question inves-

12 Md Hasan Ibrahim et al.

tigates the number of images that are provided for each of our five studied
software systems.

Approach: To understand the variety of DockerHub image choices a user has,
we first report on the number of images that are reported by DockerHub when
searching for the name of each of our five studied software systems.

Results: A large number of images exists when searching for each
software system. We observe that DockerHub has an active community of
developers as the median number of images that are provided when searching
for each software system is 19,280 images. The number of available images for
a software system ranges between 2,337 images for Cassandra to 57,120 images
for Nginx as shown in Table 1. Therefore, choosing one out of the thousands
of the available images might be challenging.

Table 1: Number of images (by March 2020) available on DockerHub when
searching for images related to the five studied software systems.

Image type # of images

Nginx 57,120
Java 22,621
MySQL 19,280
Mongo 12,069
Cassandra 2,337

Although a large number of community images exists, the official
images are the most popular images. We observe that our 5 studied official
DockerHub images have a median of 10M downloads and a median of 6,500
stars, while the most popular community images for each of our 5 studied
software systems have a median of 5M downloads and a median of 30 stars
(considering all of the 2,500 community images that we were able to crawl
for each of our five studied software system as discussed in Section 3.1). This
result shows that official images have more than 2 times downloads and nearly
216 times more stars than their most popular community images.

: Summary of Preliminary Study

Using an image from DockerHub might save the efforts to install, test,
and maintain a large number of libraries. However, choosing one image
out of the thousands of available images is challenging. Therefore, users
often download and star official images, while better community images
might exist. Our results suggest a need for a study to identify how
different are DockerHub images, which can indicate the number of true
choices one has for a single software system.

Too many Images on DockerHub! How Different are Images for the same System? 13

5 The Differences among DockerHub Images

The goal of this paper is to better understand the differences among Dock-
erHub images in order to help users find suitable Docker images. Since we
find in our preliminary study that users have a large number of image choices
for building a single software system on DockerHub, this paper compares the
images that are provided for the same software system on DockerHub. For
example, we compare images together whose names contain Nginx. We sum-
marize our comparisons along the following perspectives:

RQ1. How different are DockerHub images for the same software system
in terms of their installed libraries?

RQ2. How different are these images in terms of their size and resource
efficiency?

RQ3. How different are these images in terms of their security vulnerabil-
ities?

RQ1. How different are DockerHub images for the same software
system in terms of their installed libraries?

Motivation: While DockerHub provides a large number of images for each
software system (PQ1) and users tend to select official images (PQ2), the goal
of this research question is to understand whether there are a large variety of
choices for each single software system, or if all the images are similar to the
official image and to each other.

Approach: To evaluate the variety of choices one has for each software system,
we compare DockerHub images based on their Linux distribution and installed
libraries. We first extract the Linux distribution of an image using Snyk-docker-
analyzer. We also compare the community images with their corresponding
official image. Afterwards, we compare each pair of community images in terms
of their installed libraries. For example, considering the images a, b, and c, we
compare a-b, a-c, and b-c based on their installed libraries. Note that we use
the Snyk-docker-analyzer tool to extract the installed libraries of an image as
discussed in Section 3.

We consider images for the following Linux distributions: Alpine, Centos,
Debian, and Ubuntu since we have a large number of images to compare each
distribution. In addition, we do not compare images that have a different Linux
distribution, we compare only images with the same distribution.

Table 2: Existing Linux distributions. (*) Indicates the Linux distribution of
the official image.

Alpine Centos Debian Fedora Fedora-modular Oracle Raspbian Rhel Ubuntu
Cassandra 0 17 (*) 104 0 0 0 0 0 43
Java (*) 25 4 (*) 30 2 0 0 0 0 42
Mongo 22 9 81 2 1 0 2 1 (*) 102
Mysql 14 8 (*) 158 0 0 4 0 0 55
Nginx (*) 79 3 (*) 103 0 0 0 0 0 26

14 Md Hasan Ibrahim et al.

% of shared libraries

%
 o

f i
m

ag
es

0

25

50

75

100

20 40 60 80 100

java

nginx

(a) Considering library versions - Alpine

% of shared libraries

%
 o

f i
m

ag
es

0

25

50

75

100

20 40 60 80 100

cassandra

java

mysql

nginx

(b) Considering library versions - Debian

% of shared libraries

%
 o

f i
m

ag
es

0

25

50

75

100

20 40 60 80 100

mongo

(c) Considering library versions - Ubuntu

% of shared libraries

%
 o

f i
m

ag
es

0

25

50

75

100

20 40 60 80 100

java

nginx

(d) Ignoring library versions - Alpine

% of shared libraries

%
 o

f i
m

ag
es

0

25

50

75

100

20 40 60 80 100

cassandra

java

mysql

nginx

(e) Ignoring library versions - Debian

% of shared libraries

%
 o

f i
m

ag
es

0

25

50

75

100

20 40 60 80 100

mongo

(f) Ignoring library versions - Ubuntu

Fig. 8: The percentage of libraries shared between community and official
images. The x-axis represents the cumulative percentage of shared libraries
between the community images and their corresponding official image. The y-
axis represents the percentage of community images. For example, in Figure 8e,
51% of the Java Debian based community images share 47% of their installed
libraries with their official image (when ignoring the exact versions of the
libraries).

Results: We observe that the community images provide a richer
variety of Linux distributions compared to the official images. While
the most popular images are the official images, one can still find the same soft-
ware system installed on a Linux distribution within the community images.
For example, the official image provides Mongo on Ubuntu, while one can find
a community image that provides Mongo on a different Linux distribution,
such as Alpine and Debian as shown in Table 2.

Too many Images on DockerHub! How Different are Images for the same System? 15

% of shared libraries

%
 o

f i
m

ag
es

 p
ai

rs

0

25

50

75

100

20 40 60 80 100

cassandra

java

mongo

mysql

(a) Considering library versions - Alpine

% of shared libraries

%
 o

f i
m

ag
es

 p
ai

rs

0

25

50

75

100

20 40 60 80 100

cassandra

java

mongo

mysql

nginx

(b) Considering library versions - Centos

% of shared libraries

%
 o

f i
m

ag
es

 p
ai

rs

0

25

50

75

100

20 40 60 80 100

cassandra

java

mongo

mysql

nginx

(c) Considering library versions - Debian

% of shared libraries

%
 o

f i
m

ag
es

 p
ai

rs

0

25

50

75

100

20 40 60 80 100

cassandra

java

mongo

mysql

nginx

(d) Considering library versions - Ubuntu

% of shared libraries

%
 o

f i
m

ag
es

 p
ai

rs

0

25

50

75

100

20 40 60 80 100

java

mongo

mysql

nginx

(e) Ignoring library versions - Alpine

% of shared libraries

%
 o

f i
m

ag
es

 p
ai

rs

0

25

50

75

100

40 60 80 100

cassandra

java

mongo

mysql

nginx

(f) Ignoring library versions - Centos

% of shared libraries

%
 o

f i
m

ag
es

 p
ai

rs

0

25

50

75

100

20 40 60 80 100

cassandra

java

mongo

mysql

nginx

(g) Ignoring library versions - Debian

% of shared libraries

%
 o

f i
m

ag
es

 p
ai

rs

0

25

50

75

100

20 40 60 80 100

cassandra

java

mongo

mysql

nginx

(h) Ignoring library versions - Ubuntu

Fig. 9: The percentage of libraries that each pair of images share. The x-
axis represents the cumulative percentage of shared libraries between a pair
of images. The y-axis represents the percentage of image pairs. For example,
in Figure 9e, 60% of the Mongo Alpine based image pairs share 46% of their
installed libraries (when ignoring the exact versions of the libraries).

16 Md Hasan Ibrahim et al.

DockerHub images are different from each other in terms of their
installed libraries considering the exact versions of these libraries.
We first observe that community images are different from their corresponding
official image. Only one community Java Alpine based image share 100% of its
installed libraries (with exact library versions) with its corresponding official
Java Alpine based image, while none of the images for the other four software
systems on the different Linux distributions is identical to their corresponding
official image. Furthermore, 32% (median), 20% (median), and 12% (median)
of the Debian, Alpine, and Ubuntu based community images share at least
25% of their libraries with their respective official images across all the five
studied software systems, as shown in Figure 9c, 9a, and 9d, respectively.

In addition to the differences between community and official images, com-
munity images are different from each other in terms of their installed libraries
considering the exact versions of the installed libraries. 27% (median), 35%
(median), 6% (median), and 9% (median) of the Debian, Centos, Ubuntu, and
Alpine based images have at least one other image with which they share 100%
of their libraries and versions across all the studied software systems. More-
over, our comparison shows that 10% (median), 27% (median), 42% (median),
and 29% (median) of the Alpine, Centos, Debian, and Ubuntu based image
pairs share at least 25% of the exact version of their installed libraries across
all the five studied software systems, as shown in Figure 9a, 9b, 9c, and 9d.
Note that we ignore systems which do not have any image on a given Linux
distribution.

DockerHub images are different from each other in terms of their
installed libraries independently from these libraries’ versions. Ignor-
ing the versions of the libraries, we observe that 5% (median), 8% (median),
and 9% (median) of the Alpine, Debian, and Ubuntu based images are identical
to their corresponding official image across the five studied software systems,
as shown in Figure 8d, 8e, and 8f, respectively. While the community images
are different from the official images, we observe that all the Alpine, Debian,
and Ubuntu images share a maximum of 20% (median), 26% (median), 22%
(median) of their respective installed libraries with their corresponding official
images across the five studied software systems.

In addition to the differences between community and official images, com-
munity images are different from each other. 57% (median), 35% (median),
14% (median), and 15% (median) of the Debian, Centos, Ubuntu, and Alpine
based community images share exactly the same set of libraries with at least
one other image (irrespective of their versions) across all the five studied soft-
ware systems. Moreover, our comparison shows that 54% (median), 72% (me-
dian), 79% (median), and 39% (median) of the Alpine, Centos, Debian, and
Ubuntu based image pairs share at least 50% of the exact version of their
installed libraries across the five studied software systems, as shown in Fig-
ure 9e, 9f, 9g, and 9h. Note that we ignore systems which do not have any
image on a given Linux distribution.

While there are a median number of 13, 119, 0, and 54 libraries that are
installed in all the Alpine, Centos, Debian, and Ubuntu based images respec-

Too many Images on DockerHub! How Different are Images for the same System? 17

Table 3: Distribution of installed libraries on the studied images. Number of
installed libraries across all images/Number of installed libraries by all im-
ages/Number of libraries that are unique to an image. Note that we only
consider libraries that are not automatically installed.

Alpine Centos Debian Ubuntu
Cassandra 0/0/0 433/94/147 216/0/48 309/66/60
Java 137/17/53 311/145/74 402/0/200 557/54/279
Mongo 148/14/72 385/68/157 250/0/95 375/50/102
Mysql 99/13/63 411/119/38 203/0/52 395/52/118
Nginx 300/10/179 204/145/57 350/0/186 291/54/57
Median 137/13/63 385/119/74 250/0/95 375/54/102

tively, a median number of 63, 74, 95, and 102 libraries are more specific to
one Alpine, Centos, Debian, and Ubuntu based image, respectively, as shown
in Table 3. We further investigate the category of libraries that are installed
by at least 50% of the Debian based images. We observe that the most pop-
ular libraries are related to the group of libraries that are required by other
programs, utilities that are used to manipulate files and the disk, and admin-
istrative utilities that are used to handle system resources and user accounts
as shown in Table 4. Note that we consider just Debian images since Debian
provides a categorization of its libraries based on their goals.

While DockerHub images are different from each other, distinguishing
images from their description is not straightforward as most of the
DockerHub images are not well documented. Our manual analysis for a
representative sample of 272 images shows that 61 (22%) images have a good
description that highlights the features of the images, and 78% are not well
documented. In fact, 54 (20%) have a weak description which does not present
the features of the image, while the remaining (58%) images do not have any
description. Figure 10a and 10b show an example of a DockerHub image that
documents its features and an image with a weak description respectively.

: Summary of RQ1

There are a large variety of choices for each single software system on
DockerHub images which are hard to distinguish since developers do
not describe the particularities of their images.

uu

RQ2. How different are these images in terms of their size and
resource efficiency?

Motivation: The goal of this research question is to identify the differences
among the images in terms of their size and resource efficiency. Duplicate
resources in a Docker image can make the containers unnecessarily larger in
size. A prior study [36] shows that container deletion time increases as the

18 Md Hasan Ibrahim et al.
C
at
eg
or
y

D
es
cr
ip
ti
on

C
as
sa
nd

ra
Ja
va

M
on

go
M
ys
ql

N
gi
nx

A
dm

in
is
tr
at
io
n
U
ti
lit
ie
s

“U
ti
lit
ie
s
to

ad
m
in
is
te
r
sy
st
em

17
24

18
1

0
re
so
ur
ce
s,

m
an

ag
e
us
er

ac
co
un

ts
”
[1
2]

D
at
ab

as
es

D
at
ab

as
es

re
la
te
d
lib

ra
ri
es

0
0

0
1

0
In
te
rp
re
te
rs

in
te
rp
re
te
rs

re
la
te
d
lib

ra
ri
es

1
1

1
0

0
L
an

gu
ag
e
pa

ck
s

L
oc
al
iz
at
io
n
su
pp

or
t
fo
r
pa

ck
ag
es

2
2

2
0

0
L
ib
ra
ri
es

“L
ib
ra
ri
es

to
m
ak

e
ot
he
r
pr
og
ra
m
s
w
or
k”

[1
2]

28
46

28
0

0
M
et
a
pa

ck
ag
es

L
ib
ra
ri
es

th
at

pr
ov
id
e
de

pe
nd

en
ci
es

0
1

0
0

0
be

tw
ee
n
pa

ck
ag
es

M
is
ce
lla

ne
ou

s
-

4
5

5
0

0
N
et
w
or
k

N
et
w
or
k
ba

se
d
lib

ra
ri
es

2
2

1
2

0
P
er
l

P
er
l
ba

se
d
lib

ra
ri
es

5
5

5
1

0
Sh

el
ls

C
om

m
an

d
sh
el
ls

2
2

2
0

0
U
ti
lit
ie
s

“U
ti
lit
ie
s
fo
r
fil
e/
di
sk

m
an

ip
ul
at
io
n,

15
19

15
1

1
ba

ck
up

an
d
ar
ch
iv
e
to
ol
s,

sy
st
em

m
on

it
or
in
g,

in
pu

t
sy
st
em

s”
[1
2]

V
er
si
on

C
on

tr
ol

Sy
st
em

s
-

0
1

0
0

0
V
ir
tu
al

pa
ck
ag
es

-
18

18
16

2
1

W
eb

Se
rv
er
s

W
eb

se
rv
er
s
an

d
th
ei
r
m
od

ul
es

0
0

0
0

1
W
eb

So
ft
w
ar
e

“W
eb

se
rv
er
s,

br
ow

se
rs
,

0
2

0
0

0
pr
ox

ie
s,

do
w
nl
oa
d
to
ol
s
et
c.
”
[1
2]

Table 4: Categories of the Debian libraries [12] that are installed by at least
50% of the Debian based images. For example 17 administration utilities re-
lated libraries are installed by at least 50% of the Cassandra Debian based
images.

Too many Images on DockerHub! How Different are Images for the same System? 19

(a) Part of a good description

(b) Weak description

Fig. 10: Two examples of DockerHub image description.

image size increases. The slower deletion time affects the performance of the
container redeployment process. Moreover, the increased container size due to
duplicate resources negatively affects the cost of resource provisioning in the
Cloud. Hence, it is important to know the size and the resource efficiency of
an image and how they are different from other similar images.

Approach: To identify how images are different in terms of their sizes and
resource efficiency, we collect for each image (we used the same images that
are used in RQ1) its size and calculate its resource efficiency following the
approach discussed in Section 3. Note that the resource efficiency of an
image consists of the amount of wasted space due to duplicated
resources. Similarly to RQ1, we first compare the official to the community
images, then community images to each other, we consider images for the
following Linux distributions: Alpine, Centos, Debian, and Ubuntu, and we
compare only images with the same distribution.

Results: DockerHub images are different from each other in terms of
their sizes. 58% (median), 60% (median), and 56% (median) of the Alpine,
Debian, and Ubuntu based community images are larger in size compared
to their official images across the five studied software systems, as shown in
Figure 11, which suggests that such images might contain additional resources
that can differentiate images.

20 Md Hasan Ibrahim et al.

Table 5: Spearman correlation between image size versus library count and
image size versus wasted space. Note that we did not include 4 Centos im-
ages since they do not have enough data points to statistically compare. Bold
numbers indicate strong correlations (i.e., r > 0.7).

Case Alpine Centos Debian Ubuntu
Study library Wasted library Wasted library Wasted library Wasted

count space count space count space count space
Cassandra - - 0.09 0.20 0.73 0.20 -0.12 0.52
Java 0.84 0.09 - - 0.23 0.22 -0.14 0.26
Mongo 0.58 0.22 - - 0.43 0.30 0.42 0.43
MySQL 0.05 0.48 - - 0.47 0.34 0.70 0.44
Nginx 0.73 0.66 - - 0.83 0.48 0.82 0.43

The size of community images which build the same software system varies.
Cassandra Centos based, Java Ubuntu based, then Java Debian based images
differ the most in size where their interquartile range of image size is 227 MB,
217 MB and 186 MB, respectively. Although Nginx Alpine based images differ
the least with an interquartile range of 8 MB since Alpine is a light-weight
Linux distribution, the interquartile range is 100% of the size of their official
image.

Note that the last difference among the images in terms of the size is
not necessarily associated to the number of installed libraries. We observe a
statistically significant difference between the number of installed libraries and
the size of images for all images and Linux distributions, except for Debian
based Java and MySQL images. Our finding suggests that images may contain
additional resources that are not necessarily the size of the installed libraries
as shown in Table 5. Therefore, images may differ on resources in addition to
differing in terms of the installed libraries (RQ1).

DockerHub images are different from each other in terms of their
resource efficiency. In addition to the variety of choices that exist on Dock-
erHub images, some images are even better than their corresponding official
image in terms of their resource efficiency. 26% (median), 49% (median), and
8% (median) of the community Alpine, Debian, and Ubuntu based images
are more resource efficient than their corresponding official image across the
five studied software systems, as shown in Table 6. For example, 75% of the
Cassandra Debian based community images are more resource efficient than
their official image. Besides, we do not observe any official image that is 100%
resource efficient (free from any duplicate resources), while 67% (median), 2%
(median), and 3% (median) of the Alpine, Debian, and Ubuntu community
images are 100% resource efficient across the five studied software systems.

Besides the difference between community and official images, community
images are also different from each other in terms of their resource efficiency.
For instance, Centos and Ubuntu based community images have a median
interquartile of 135.76 MB and 42.85 MB of wasted resources, respectively.
While the wasted space is less important on Alpine and Debian images, these
images still have extreme cases. Alpine and Debian based community images

Too many Images on DockerHub! How Different are Images for the same System? 21

0

50

100

150

200

mongo java mysql nginx

si
ze

 in
 M

B

(a) Alpine

0

500

1000

1500

java cassandra mongo mysql nginx

si
ze

 in
 M

B

(b) Debian

0

200

400

600

java cassandra mongo mysql nginx

si
ze

 in
 M

B

(c) Ubuntu

0

200

400

600

cassandra mysql mongo java nginx

si
ze

 in
 M

B

(d) Centos

Fig. 11: Size of different types of images, where the red star shows the size of
the corresponding official image.

22 Md Hasan Ibrahim et al.
C
as
e

A
lp
in
e

D
eb
ia
n

U
bu

nt
u

St
ud

y
O
ffi
ci
al

M
ed
ia
n

%
of

th
e

O
ffi
ci
al

M
ed

ia
n

%
of

th
e

O
ffi
ci
al

M
ed
ia
n

%
of

th
e

Im
ag
e

effi
ci
en
cy

of
co
m
m
un

it
y

Im
ag
e

effi
ci
en
cy

of
co
m
m
un

it
y

Im
ag
e

effi
ci
en
cy

of
co
m
m
un

it
y

E
ffi
ci
en
cy

co
m
m
un

it
y

im
ag
e
m
or
e

E
ffi
ci
en
cy

co
m
m
un

it
y

im
ag
e
m
or
e

E
ffi
ci
en
cy

co
m
m
un

it
y

im
ag
e
m
or
e

im
ag
es

effi
ci
en
t
th
an

im
ag
es

effi
ci
en
t
th
an

im
ag
es

effi
ci
en
t
th
an

offi
ci
al

im
ag
e

offi
ci
al

im
ag
e

offi
ci
al

im
ag
e

C
as
sa
nd

ra
-

-
-

98
.2

98
.6

75
-

91
.4

-
Ja
va

99
.9

99
.7

4
98
.9

98
.9

51
-

93
.4

-
M
on

go
-

99
.7

-
-

98
.8

-
98
.6

92
.4

8
M
yS

Q
L

-
99
.8

-
98
.5

98
.5

46
-

89
.5

-
N
gi
nx

98
.9

98
.9

48
98
.4

98
.2

35
-

84
.9

-

Table 6: Comparison of the resource efficiency between official and community
images.

Too many Images on DockerHub! How Different are Images for the same System? 23

0

20

40

60

80

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

java

0

20

40

60

80

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

mongo

0

20

40

60

80

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

mysql

0

20

40

60

80

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

nginx

Fig. 12: Resource efficiency distributions of the Alpine based DockerHub im-
ages where the red star shows the resource efficiency of the corresponding
official image.

have a median difference resource efficiency between community images of
48% (the less and the more resource efficient image have an efficiency of 51%
and 99%) and 50% (the less and the more resource efficient image have an
efficiency of 49% and 99%), respectively as shown in Figure 12, 13, 14, and 15.
Note that there is no correlation (i.e., Spearman correlation) between the size
of an image and its resource efficiency for all types of images based on different
Linux distributions, except few cases that are shown in Table 5.

While most (median of 1) of the duplicated resources are specific to one
image, there are resources that are duplicated across different images, as shown
in Figure 16. For example, we observe that the “/etc/group” file, which is
dedicated to defining groups to which users belong, is duplicated in 78 Nginx
Alpine based images. The same file is also duplicated in 22, 12, and 7 Mongo,
Mysql, and Java Alpine based images, respectively.

DockerHub image developers do not provide information regard-
ing the resource efficiency of their images. By manually studying the
descriptions of 50 DockerHub images (the top 10 most resource efficient images
from each image type), we observe that image descriptions do not reveal any

24 Md Hasan Ibrahim et al.

0

20

40

60

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

cassandra

0

20

40

60

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

java

0

20

40

60

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

mongo

0

20

40

60

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

mysql

0

20

40

60

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

nginx

Fig. 13: Resource efficiency distributions of the Centos based DockerHub im-
ages.

information about the efficiency of the images, while 2% of the images specify
the resources that they contain.

: Summary of RQ2

In addition to the variety of choices in terms of the installed libraries,
DockerHub images differ in terms of their resources as well. In addition,
some choices can be better than other in terms of images resource
efficiency. While users tend to download official images, 26% (median),
49% (median), and 8% (median) of the community Alpine, Debian,
and Ubuntu based images are more resource efficient across the five
studied software systems. However, finding such efficient images is not
trivial since developers do not document the resource efficiency of their
images.

RQ3. How different are these images in terms of their security vul-
nerabilities?

Too many Images on DockerHub! How Different are Images for the same System? 25

0

20

40

60

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

cassandra

0

20

40

60

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

java

0

20

40

60

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

mongo

0

20

40

60

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

mysql

0

20

40

60

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

nginx

Fig. 14: Resource efficiency distributions of the Debian based DockerHub im-
ages where the red star shows the resource efficiency of the corresponding
official image.

Motivation: The goal of this research question is to compare the security
among DockerHub images since security is a major concern when deploying a
Docker image [3].

Approach: To compare DockerHub images based on their security vulnera-
bilities, we extract the security vulnerabilities of the libraries that are installed
on each of the Debian based DockerHub images (that are used in RQ1) using
ConPan [32] as discussed in Section 3. Note that we focus on Debian based
images, for which we have the vulnerabilities dataset.

Results: DockerHub images have different number of security vul-
nerabilities.We observe that there are community images which have less se-
curity vulnerabilities than their corresponding official image, although Docker
regularly applies security updates on the official images [17]. All the four De-
bian based official images are not free from security vulnerabilities, and 7%
(median) of the community images are more secure than their corresponding
official images across the four studied systems (7% for MySQL, 0.9% for Ng-
inx, 71% for Java, and 6% for Cassandra), for which an official Debian based
image exists, as shown in Figure 17.

26 Md Hasan Ibrahim et al.

0

10

20

30

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

cassandra

0

10

20

30

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

java

0

10

20

30

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

mongo

0

10

20

30

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

mysql

0

10

20

30

40 60 80 100
% of resource efficiency

%
 o

f i
m

ag
es

nginx

Fig. 15: Resource efficiency distributions of the Ubuntu based DockerHub im-
ages where the red star shows the resource efficiency of the corresponding
official image.

While community images and official images are different in terms of the
number of security vulnerabilities they have, we observe a large variance on
the number of security vulnerabilities between community images. In fact, the
interquartile ranges of security vulnerabilities are 144, 39, 324, 79, 332 for Ng-
inx, MySQL, Java, Mongo, and Cassandra images respectively. Moreover, all
the images have at least one vulnerability and the median number of secu-
rity vulnerabilities are 433, 132, 135, 168, and 319 for Java, Mongo, MySQL,
Nginx, and Cassandra images, respectively, as shown in Figure 17.

We do not observe any vulnerabilities that are specific to official images
(i.e., vulnerabilities that exist in the official image and not in the community
images). We found that the same vulnerabilities can appear in a median of 3
different images, as shown in Figure 18. We observe 12, 8, 2, 7, 10 vulnera-
bilities that exist in all Cassandra, Java, Mongo, MySQL, and Nginx images.
The “CVE-2016-2781” and “CVE-2017-18018” are shared between all the stud-
ied images. “CVE-2016-2781” allows local users to access the parent session,
whereas “CVE-2017-18018” allows the arbitrary modification of file ownership.

Except for the official images, DockerHub image developers do
not provide any information regarding the security aspect of their

Too many Images on DockerHub! How Different are Images for the same System? 27

0

20

40

60

80

java mongo mysql nginx

N
um

be
r

of
 im

ag
es

(a) Alpine

0

50

100

150

cassandra java mongo mysql nginx

N
um

be
r

of
 im

ag
es

(b) Debian

0

25

50

75

100

cassandra java mongo mysql nginx

N
um

be
r

of
 im

ag
es

(c) Ubuntu

4

8

12

16

cassandra java mongo mysql nginx

N
um

be
r

of
 im

ag
es

(d) Centos

Fig. 16: The number of images (y-axis) that have the same duplicated resource.

images. By manually inspecting the descriptions of 50 DockerHub images (the
top 10 most secure images from each of the five studied software systems),
we do not observe any image where developers discuss its security aspect,
except for two cases for which developers mention the security aspect, but
not in the context of library vulnerabilities. For example, the description of
the “centerx/nginx” image mentions that users “need to add SSL to secure
client interactions”. Note that DockerHub evaluates and shows the security
vulnerabilities of just the official images and not the community images.

28 Md Hasan Ibrahim et al.

0

500

1000

1500

2000

java cassandra nginx mysql mongo

of

 a
ll

se
cu

rit
y

vu
ln

er
ab

ili
tie

s

Fig. 17: Number of security vulnerabilities in the DockerHub images where
the red stars show the number of security vulnerabilities in the corresponding
official image.

0

50

100

150

cassandra java mongo mysql nginx

N
um

be
r

of
 im

ag
es

Fig. 18: The number of images (y-axis) that have the same security vulnera-
bility.

: Summary of RQ3

Distinguishing secure and insecure images on DockerHub is not
straightforward. Official images, for which Docker evaluates and pub-
licly displays their security vulnerabilities, are not always the most
secure images. 7% (median) of the community images have less secu-
rity vulnerabilities than their corresponding official images across the
four software systems, for which an official image exists.

Too many Images on DockerHub! How Different are Images for the same System? 29

Table 7: The percentage of community images that are more resource efficient
and have less security vulnerabilities compared to their corresponding official
image. Note that there is no official Debian based image for Mongo.

Image type % of community images
Cassandra 3%
Java 44%
Mongo -
MySQL 4%
Nginx 0%

6 Discussion

We observe from our preliminary study that using an image from DockerHub
can save one’s efforts of building, testing, and maintaining an image from
scratch. However, finding a suitable image might be challenging due to the
large number of existing images for each software system on DockerHub. Thus,
we conducted an empirical study that compares DockerHub images to better
understand their differences.

DockerHub contains a large number of choices of each single soft-
ware system, while the particularities of images are not well docu-
mented. Our study shows that there are a variety of choices of each single
software system on DockerHub since DockerHub images install different li-
braries and have different resources. We observe that community images are
different from their corresponding official images, while they also differ among
themselves in terms of their installed libraries (RQ1). Besides, images provide
different sizes which indicate the installation of different resources (RQ2). How-
ever, developers do not document the particularities of their images. Neither do
they document which libraries are installed nor which resources are available
on their images.

Some of these image choices might be better than others in terms
of improved resource efficiency and reduced security vulnerabilities.
3% (median) of the Debian based community images are at the same time
more resource efficient and have less security vulnerabilities compared to the
official images across the five studied software systems, as shown in Table 7 and
Figure 19. For example, “gcarre/java” has a resource efficiency of 99.7% while
containing 67 vulnerabilities compared to its official image, whose resource
efficiency is 98% and contains 633 vulnerabilities.

While few images are better than the official images in both security and
resource efficiency, there are other images that are better than the official image
on just one of the two perspectives as shown in Figure 19. 26% (median), 49%
(median), and 7% (median) of the Alpine, Debian, and Ubuntu based images
are more resource efficient than their corresponding official image (RQ2) across
the five studied software systems, while 7% (median) of the Debian based
images have less security vulnerabilities than their corresponding official image
(RQ3) across the four studied software systems, for which a Debian based

30 Md Hasan Ibrahim et al.

500

1000

1500

2000

80 85 90 95 100
% of efficiency

of

 v
ul

ne
ra

bi
lit

ie
s

cassandra

250

500

750

85 90 95 100
% of efficiency

of

 v
ul

ne
ra

bi
lit

ie
s

java

250

500

750

1000

60 70 80 90 100
% of efficiency

of

 v
ul

ne
ra

bi
lit

ie
s

mysql

500

1000

70 80 90 100
% of efficiency

of

 v
ul

ne
ra

bi
lit

ie
s

nginx

more efficient; less vulnerable images

more efficient; more vulnerable images

less efficient; less vulnerable images

less efficient; more vulnerable images

official image

Fig. 19: The relation between the resource efficiency and security vulnerabil-
ities of the images. We plot images based on their resource efficiency (RQ2)
and number of vulnerabilities (RQ3). Note that the green images are better
than the official images in terms of resource efficiency and number of vulnera-
bilities, while the red images are the worst images on both perspectives. Blue
and yellow images are better than the official image on just one of the two
perspectives. Note that we consider just Debian images since it is the only
Linux distribution for which we have a dataset of vulnerabilities. We do not
consider Mongo, since it does not have any Debian based official image.

Too many Images on DockerHub! How Different are Images for the same System? 31

Table 8: Spearman’s rank correlations between different metrics of the images.

Image type
of libraries vs

of security vulnerabilities
correlation coefficient (rs)

Resource efficiency vs
of security vulnerabilities
correlation coefficient (rs)

Cassandra 0.8 0.3
Java 0.4 -0.2
Mongo 0.6 0.08
MySQL 0.5 0.1
Nginx 0.5 0.2

official image exists. That is even though Docker regularly integrates security
fixes and tracks the security of official images. From the other side, community
developers do not document the efficiency and security perspectives of their
images, which make them harder to identify.

While the number of security vulnerabilities might be associated with the
number of installed libraries, we do not observe an association between the
resource efficiency and the number of security vulnerabilities. We observe a
very strong and a strong correlation between the number of vulnerabilities
and the number of installed libraries on Cassandra and Mongo images, respec-
tively, while we observe a moderate correlation for Java, Mysql, and Nginx as
shown in Table 8. However, we observe a weak correlation between security
vulnerabilities and resource efficiency for all the images as shown in Table 8.

The best images in terms of resource efficiency and security vul-
nerabilities are not explored by users. While resource efficient images
and images with less security vulnerabilities compared to the official image
exist, users neither download nor star these images. We do not observe any
significant correlations (Spearman’s correlation coefficient) neither between
the resource efficiency and the number of downloads and stars nor between
the number of security vulnerabilities and number of downloads and stars as
shown in Table 9.

: Summary

Our results suggest to Docker tooling creators and DockerHub should
provide approaches to distinguish images based on their installed li-
braries, resources, resource efficiency, and security vulnerabilities.

7 Related Work

Prior studies on Docker images focus on their security, quality, and the evolu-
tion of Docker images. For example, Xu et al. [31] showed that mining Docker
image repositories from DockerHub can provide insight into the use cases and
the configurations of software systems. Tak et al. [29] observed that more than
92% of the DockerHub images are not free from any security or compliance

32 Md Hasan Ibrahim et al.

Table 9: Spearman’s rank correlation coefficients between the resource effi-
ciency, number of security vulnerabilities, and the popularity metrics.

Image Popularity Resource efficiency # of security
type metric Alpine Centos Debian Ubuntu vulnerabilities

Cassandra #downloads - 0.2 -0.1 0.02 0.06
#stars - -0.02 -0.06 0.2 0.04

Java #downloads -0.2 - -0.3 0.003 0.09
#stars -0.1 - -0.002 -0.2 0.24

Mongo #downloads 0.4 - -0.2 0.04 -0.06
#stars 0.08 - 0.05 0.06 -0.06

MySQL #downloads -0.4 - -0.06 0.04 -0.03
#stars 0.1 - 0.05 -0.1 -0.05

Nginx #downloads 0.03 - -0.09 0.07 -0.12
#stars 0.05 - -0.005 -0.08 -0.06

issue. Shu et al. [27] created a scalable Docker image vulnerability analysis
(DIVA) framework which can discover, download, and analyze the images from
DockerHub. They observed that on average more than 180 vulnerabilities are
present on DockerHub images. Zerouali et al. [33] studied outdated and most
up-to-date DockerHub images and observed that even the most up-to-date
Docker images have severe security vulnerabilities. Zerouali et al. [32] proposed
ConPan, a tool that identifies the characteristics of Docker installed packages
(e.g., outdatedness, bugs, and security vulnerabilities). Zhang et al. [34] iden-
tified six different evolutionary patterns for Dockerfiles and investigated the
impact of these different evolutionary patterns on the quality and the build
latency of Docker images [35]. They observed that a decrease in the number
of image layers and size along with more diverse instructions can significantly
improve both the quality and the build time of Docker images. Lu et al. [22]
address the problem of temporary files that are created during the build of an
image and which increase its size.

Since DockerHub supports searching for images based on only the name,
description, or username, Brogi et al. [5] proposed a tool named DOCK-
ERFINDER which supports a multi-attribute search feature for Docker im-
ages. The tool can search Docker images based on the name, image size, or
supported software distributions (e.g., python 2.7 and java 1.8) of an image.
Although their research also helps users find out suitable Docker images with
attribute-based searching, they did not compare the internal differences among
DockerHub images. Chen et al.[7] proposed a semi-supervised model that pro-
poses labels for a Docker image.

While prior studies conducted on Docker images focused on different as-
pects such as security, quality, and evolution of Docker images, we focus on
identifying the differences among DockerHub images which appear to install
the same software system according to their names.

Too many Images on DockerHub! How Different are Images for the same System? 33

8 Threats to Validity

8.1 External Validity

We selected five popular software systems then randomly selected a representa-
tive sample of their community images to mitigate any bias that can threaten
the generalizability of our observations. Future studies should explore our find-
ings on other systems as well as images.

The results are only applicable on DockerHub images since we only study
images from DockerHub. The results may vary in other Docker image registry
platforms such as Quay [9] or Google Container Registry [20]. Therefore, ad-
ditional replication studies can be performed to identify the differences among
the images on other Docker image registry platforms.

8.2 Internal Validity

A first threat to internal validity for threat concerns the collection of installed
libraries. We only consider in this study the images that use the APT, APK, or
RPM package manager to install their required libraries. Future studies should
explore our findings for manually installed libraries as well as libraries that are
installed using other package manager systems (e.g., NPM and PYPI).

Another internal threat to validity concerning the comparison of our stud-
ied images is related to the content of an image. One might install on top
of a software system, additional services or even more systems, such as the
“nginx-php-wordpress” image, which might contain on top of Nginx, PHP and
WordPress. Thus, to mitigate this risk and fairly compare similar images, we
consider images whose names are exactly the name of one of our studied soft-
ware systems, as discussed in Section 3.1. That is because users might filter
out the images that provide multiple services from their names when searching
for images related to a software system. Future studies should investigate ad-
ditional heuristics to better quantify the content of images from their available
user artifacts (e.g., description and Dockerfile).

9 Conclusion

In this paper, we study the differences among DockerHub images. We observe
in our preliminary study that images from DockerHub can save a consider-
able amount of effort when building, testing, and maintaining a Docker image.
However, we observe that a large number of Docker image choices are re-
ported when searching for any given software system on DockerHub, which
makes choosing the most suitable image a nontrivial endeavor. Therefore, we
empirically compare DockerHub images for the same software system in terms
of their installed libraries, sizes, resource efficiency, and security vulnerabili-
ties. We observe that users have a variety of choices for each software system

34 Md Hasan Ibrahim et al.

in terms of installed libraries, while these choices vary in terms of resource
efficiency and security. 26% (median), 49% (median), and 8% (median) of the
community Alpine, Debian, and Ubuntu based images are more resource effi-
cient than their respective official images across all the five studied software
systems. 7% (median) of the community images have less security vulnerabil-
ities than their respective official images across all the studied Debian based
images. We also observe that developers do not document the particularities of
their images regarding the resource efficiency and security; and users neither
select the most resource efficient images nor images with less security vulner-
abilities. Hence, we recommend that Docker tooling creators and DockerHub
provide mechanisms for users to distinguish among images and select the most
suitable images for their needs. Future studies are needed to investigate a large
number of images, or other Docker image registry platforms as well as studying
images along additional perspectives (e.g., outdatedness of images).

References

1. 451research. 451 research. https://451research.com, 5 2019. [Online;
last accessed: 23 May, 2019].

2. A. Acharya, J. Fanguëde, M. Paolino, and D. Raho. A performance bench-
marking analysis of hypervisors containers and unikernels on armv8 and
x86 cpus. In European Conference on Networks and Communications (Eu-
CNC), pages 282–289, June 2018.

3. A. Bettini. Vulnerability exploitation in docker container environments.
FlawCheck, Black Hat Europe, 2015.

4. Bitbucket. Bitbucket. https://bitbucket.org, 5 2019. [Online; last
accessed: 23 May, 2019].

5. A. Brogi, D. Neri, and J. Soldani. Dockerfinder: Multi-attribute search of
docker images. In International Conference on Cloud Engineering (IC2E),
pages 273–278, April 2017.

6. E. Carter. 2018 docker usage report. https://sysdig.com/blog/
2018-docker-usage-report, 5 2019. [Online; last accessed: 23 May,
2019].

7. W. Chen, J.-H. Zhou, J.-X. Zhu, G.-Q. Wu, and J. Wei. Semi-supervised
learning based tag recommendation for docker repositories. Journal of
Computer Science and Technology, 34(5):957–971, Sep 2019.

8. J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C.
Gall. An empirical analysis of the docker container ecosystem on github.
In 14th International Conference on Mining Software Repositories (MSR),
pages 323–333, May 2017.

9. CoreOS. Coreos quay. https://quay.io, 5 2019. [Online; last accessed:
23 May, 2019].

10. Datadog. Datadog. https://www.datadoghq.com, 5 2019. [Online; last
accessed: 23 May, 2019].

https://451research.com
https://bitbucket.org
https://sysdig.com/blog/2018-docker-usage-report
https://sysdig.com/blog/2018-docker-usage-report
https://quay.io
https://www.datadoghq.com

Too many Images on DockerHub! How Different are Images for the same System? 35

11. Datadog. Docker adoption. https://www.datadoghq.com/
docker-adoption, 5 2019. [Online; last accessed: 23 May, 2019].

12. Debian. Debian packages. https://packages.debian.org/, 2020.
13. Debian. Debian packages vulnerabilities. https://security-tracker.

debian.org/tracker/data/json, 2020.
14. A. Decan, T. Mens, and E. Constantinou. On the impact of security vul-

nerabilities in the npm package dependency network. In 15th International
Conference on Mining Software Repositories (MSR), pages 181–191, May
2018.

15. Docker. Docker. https://www.docker.com, 5 2019. [Online; last accessed:
23 May, 2019].

16. DockerHub. Dockerhub http api v2. https://docs.docker.com/
registry/spec/api, 5 2019. [Online; last accessed: 23 May, 2019].

17. DockerHub. Official images on dockerhub. https://docs.docker.com/
docker-hub/official_images, 6 2019. [Online; last accessed: 7 June,
2019].

18. DockerHub. Nginx docker images. https://www.docker.com/products/
docker-hub, 3 2020. [Online; last accessed: 15 March, 2020].

19. Github. Github. https://github.com, 5 2019. [Online; last accessed: 23
May, 2019].

20. Google. Google container registry. https://cloud.google.com/
container-registry, 5 2019. [Online; last accessed: 23 May, 2019].

21. Z. Li, M. Kihl, Q. Lu, and J. A. Andersson. Performance overhead com-
parison between hypervisor and container based virtualization. In 31st
International Conference on Advanced Information Networking and Ap-
plications (AINA), pages 955–962, March 2017.

22. Z. Lu, J. Xu, Y. Wu, T. Wang, and T. Huang. An empirical case study
on the temporary file smell in dockerfiles. IEEE Access, 7:63650–63659,
2019.

23. D. Merkel. Docker: Lightweight linux containers for consistent develop-
ment and deployment. volume 2014, Mar. 2014.

24. N. Muhtaroglu, B. Kolcu, and İ. Arı. Testing performance of application
containers in the cloud with hpc loads. In Fifth International Conference
On Parallel, Distributed, Grid And Cloud Computing For Engineering.
Civil-Comp, 2017.

25. Serverwatch. Container revenue growing to 2.7b by 2020. https://www.
serverwatch.com/server-news/container-revenue-growing-to-2.
7b-by-2020.html, 5 2019. [Online; last accessed: 23 May, 2019].

26. S. Shirinbab, L. Lundberg, and E. Casalicchio. Performance evaluation of
container and virtual machine running cassandra workload. In 3rd Inter-
national Conference of Cloud Computing Technologies and Applications
(CloudTech), pages 1–8, Oct 2017.

27. R. Shu, X. Gu, and W. Enck. A study of security vulnerabilities on dock-
erhub. In Seventh ACM on Conference on Data and Application Security
and Privacy (CODASPY), pages 269–280, 2017.

https://www.datadoghq.com/docker-adoption
https://www.datadoghq.com/docker-adoption
https://packages.debian.org/
https://security-tracker.debian.org/tracker/data/json
https://security-tracker.debian.org/tracker/data/json
https://www.docker.com
https://docs.docker.com/registry/spec/api
https://docs.docker.com/registry/spec/api
https://docs.docker.com/docker-hub/official_images
https://docs.docker.com/docker-hub/official_images
https://www.docker.com/products/docker-hub
https://www.docker.com/products/docker-hub
https://github.com
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://www.serverwatch.com/server-news/container-revenue-growing-to-2.7b-by-2020.html
https://www.serverwatch.com/server-news/container-revenue-growing-to-2.7b-by-2020.html
https://www.serverwatch.com/server-news/container-revenue-growing-to-2.7b-by-2020.html

36 Md Hasan Ibrahim et al.

28. Snyk. Snyk docker analyzer. https://github.com/snyk/
snyk-docker-analyzer, 5 2019. [Online; last accessed: 23 May,
2019].

29. B. Tak, H. Kim, S. Suneja, C. Isci, and P. Kudva. Security analysis of
container images using cloud analytics framework. In 2018 Web Services
(ICWS), pages 116–133, Cham, 2018.

30. Wagoodman. Dive. https://github.com/wagoodman/dive, 5 2019. [On-
line; last accessed: 23 May, 2019].

31. T. Xu and D. Marinov. Mining container image repositories for software
configuration and beyond. In 40th International Conference on Software
Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER),
pages 49–52, May 2018.

32. A. Zerouali, V. Cosentino, G. Robles, J. M. Gonzalez-Barahona, and
T. Mens. Conpan: a tool to analyze packages in software containers.
In Proceedings of the 16th International Conference on Mining Software
Repositories, pages 592–596. IEEE Press, 2019.

33. A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona. On the
relation between outdated docker containers, severity vulnerabilities, and
bugs. In 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 491–501, Feb 2019.

34. Y. Zhang, H. Wang, and V. Filkov. A clustering-based approach for mining
dockerfile evolutionary trajectories. volume 62, pages 19101:1–19101:3.
Science China Press, 2019.

35. Y. Zhang, G. Yin, T. Wang, Y. Yu, and H. Wang. An insight into the
impact of dockerfile evolutionary trajectories on quality and latency. In
42nd Annual Computer Software and Applications Conference (COMP-
SAC), volume 01, pages 138–143, July 2018.

36. C. Zheng and D. Thain. Integrating containers into workflows: A case
study using makeflow, work queue, and docker. In 8th International Work-
shop on Virtualization Technologies in Distributed Computing (VTDC),
pages 31–38, 2015.

https://github.com/snyk/snyk-docker-analyzer
https://github.com/snyk/snyk-docker-analyzer
https://github.com/wagoodman/dive

	Introduction
	Background
	Data Extraction
	Preliminary Study: The Advantages and Abundance of DockerHub Images
	The Differences among DockerHub Images
	Discussion
	Related Work
	Threats to Validity
	Conclusion

